2,000 research outputs found

    Summary of a Crew-Centered Flight Deck Design Philosophy for High-Speed Civil Transport (HSCT) Aircraft

    Get PDF
    Past flight deck design practices used within the U.S. commercial transport aircraft industry have been highly successful in producing safe and efficient aircraft. However, recent advances in automation have changed the way pilots operate aircraft, and these changes make it necessary to reconsider overall flight deck design. Automated systems have become more complex and numerous, and often their inner functioning is partially or fully opaque to the flight crew. Recent accidents and incidents involving autoflight system mode awareness Dornheim, 1995) are an example. This increase in complexity raises pilot concerns about the trustworthiness of automation, and makes it difficult for the crew to be aware of all the intricacies of operation that may impact safe flight. While pilots remain ultimately responsible for mission success, performance of flight deck tasks has been more widely distributed across human and automated resources. Advances in sensor and data integration technologies now make far more information available than may be prudent to present to the flight crew

    A Hybrid Quantum-Classical Paradigm to Mitigate Embedding Costs in Quantum Annealing

    Full text link
    Despite rapid recent progress towards the development of quantum computers capable of providing computational advantages over classical computers, it seems likely that such computers will, initially at least, be required to run in a hybrid quantum-classical regime. This realisation has led to interest in hybrid quantum-classical algorithms allowing, for example, quantum computers to solve large problems despite having very limited numbers of qubits. Here we propose a hybrid paradigm for quantum annealers with the goal of mitigating a different limitation of such devices: the need to embed problem instances within the (often highly restricted) connectivity graph of the annealer. This embedding process can be costly to perform and may destroy any computational speedup. In order to solve many practical problems, it is moreover necessary to perform many, often related, such embeddings. We will show how, for such problems, a raw speedup that is negated by the embedding time can nonetheless be exploited to give a real speedup. As a proof-of-concept example we present an in-depth case study of a simple problem based on the maximum weight independent set problem. Although we do not observe a quantum speedup experimentally, the advantage of the hybrid approach is robustly verified, showing how a potential quantum speedup may be exploited and encouraging further efforts to apply the approach to problems of more practical interest.Comment: 30 pages, 6 figure

    The Neighborhood’s Catalogue: Lower East Side Planning and Design File

    Get PDF
    This catalogue was designed to support the process of slow redevelopment over time, combined with conservation of diverse social and historical continuity and the exploration of new land and building uses. The catalogue shows how to involve neighborhoods in participation, supportive design, incremental planning and phased development. This project was made possible by a grant from the National Endowment for the Arts. Reprinted in 1987.https://dc.uwm.edu/caupr_mono/1047/thumbnail.jp

    Searching for stochastic gravitational-wave background with the co-located LIGO interferometers

    Full text link
    This paper presents techniques developed by the LIGO Scientific Collaboration to search for the stochastic gravitational-wave background using the co-located pair of LIGO interferometers at Hanford, WA. We use correlations between interferometers and environment monitoring instruments, as well as time-shifts between two interferometers (described here for the first time) to identify correlated noise from non-gravitational sources. We veto particularly noisy frequency bands and assess the level of residual non-gravitational coupling that exists in the surviving data.Comment: Proceedings paper from the 7th Edoardo Amaldi Conference on Gravitational Waves, held in Sydney, Australia from 8-14 July 2007. Accepted to J. Phys.: Conf. Se

    Software-Defined Radio for Space-to-Space Communications

    Get PDF
    A paper describes the Space- to-Space Communications System (SSCS) Software- Defined Radio (SDR) research project to determine the most appropriate method for creating flexible and reconfigurable radios to implement wireless communications channels for space vehicles so that fewer radios are required, and commonality in hardware and software architecture can be leveraged for future missions. The ability to reconfigure the SDR through software enables one radio platform to be reconfigured to interoperate with many different waveforms. This means a reduction in the number of physical radio platforms necessary to support a space mission s communication requirements, thus decreasing the total size, weight, and power needed for a mission

    Modeling and Analysis of Space Based Transceivers

    Get PDF
    This paper presents the tool chain, methodology, and initial results of a study to provide a thorough, objective, and quantitative analysis of the design alternatives for space Software Defined Radio (SDR) transceivers. The approach taken was to develop a set of models and tools for describing communications requirements, the algorithm resource requirements, the available hardware, and the alternative software architectures, and generate analysis data necessary to compare alternative designs. The Space Transceiver Analysis Tool (STAT) was developed to help users identify and select representative designs, calculate the analysis data, and perform a comparative analysis of the representative designs. The tool allows the design space to be searched quickly while permitting incremental refinement in regions of higher payoff

    Inflation at the Electroweak Scale

    Full text link
    We present a simple model for slow-rollover inflation where the vacuum energy that drives inflation is of the order of GF−2G_F^{-2}; unlike most models, the conversion of vacuum energy to radiation (``reheating'') is moderately efficient. The scalar field responsible for inflation is a standard-model singlet, develops a vacuum expectation value of the order of 4\times 10^6\GeV, has a mass of order 1\GeV, and can play a role in electroweak phenomena.Comment: 14 page
    • …
    corecore